BINDING ENERGY

Contents

Binding Energy

Mass Defect

Example of Binding energy & Mass Defect

Binding Energy

Binding energy is the energy required to disassemble or break a whole system into separate parts.

Nuclear binding energy is the energy that would be required to disassemble or break the <u>nucleus</u> of an atom into its component parts. These component parts are <u>neutrons</u> and <u>protons</u>, which are collectively called <u>nucleons</u>.

Mass defect

The <u>mass</u> of an atomic nucleus is usually less than the sum of the individual masses of the <u>constituent</u> protons and neutrons (according to Einstein's equation E=mc²) and this 'missing mass' is known as the <u>mass defect</u>, and represents the energy that was released when the nucleus was formed.

Keep this in


```
1 atomic mass = 1µ
unit = 931 MeV
```

$$m_p = 1.0073 \mu$$

$$m_n = 1.0087 \mu$$

STEP 1:

$$_{0}^{1}n+{}^{235}_{92}U\rightarrow {}^{138}_{56}Ba+{}^{95}_{36}Kr+{}^{1}_{0}n$$

reactants

products

Mass reactant= 235.0439 amu + 1.0087 amu = 236.0526 amu

Mass product= 137.905 + 94.900 + 3.026= 235.831 amu

STEP 2:

Difference between mass of reactants and mass of products

 ΔM = mass of reactants – mass of products ΔM =236.0526 amu - 235.831

 $\Delta M = 0.222$ amu

Mass defect

STEP 3:

Convert mass defect into energy

E= mass defect (c²) E=0.222 amu(931 MeV/ amu) E=206 MeV

Binding Energy

Binding Energy: Compared

5.4 MeV

Alpha Fission decay 206 MeV