
Chapter 3

Gauss’(s) Law

3.1 The Important Stuff

3.1.1 Introduction; Grammar

This chapter concerns an important mathematical result which relates the electric field in
a certain region of space with the electric charges found in that same region. It is useful
for finding the value of electric field in situations where the charged objects are highly
symmetrical. It is also valuable as an alternate mathematical expression of the inverse–
square nature of the electric field from a point charge (Eq. 2.3).

Alas, physics textbooks can’t seem to agree on the name for this law, discovered by
Gauss. Some call it Gauss’ Law. Others call it Gauss’s Law. Do we need the extra “s”
after the apostrophe or not? Physicists do not yet know the answer to this question!!!!

3.1.2 Electric Flux

The concept of electric flux involves a surface and the (vector) values of the electric field
at all points of the surface. To introduce the way that flux is calculated, we start with a
simple case. We will consider a flat surface of area A and an electric field which is constant

(that is, has the same vector value) over the surface.
The surface is characterized by the “area vector” A. This is a vector which points

perpendicularly (normal) to the surface and has magnitude A. The surface and its area
vector along with the uniform electric field are shown in Fig. 3.1.

Actually, there’s a little problem here: There are really two choices for the vector A. (It
could have been chosen to point in the opposite direction; it would still be normal to the
surface and have the same magnitude.) However in every problem where we use electric flux,
it will be made clear which choice is made for the “normal” direction.

Now, for this simple case, the electric flux Φ is given by

Φ = E · A = EA cos θ

where theta is the angle between E and A.
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Figure 3.1: Electric field E is uniform over a flat surface whose area vector is A.
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Figure 3.2: How flux is calculated (conceptually) for a general surface. Divide up the big surface into small
squares; for each square find the area vector ∆Ai and average electric field Ei. Take ∆Ai · Ei and add up
the results for all the little squares.

We see that electric flux is a scalar and has units of N·m2

C
.

In general, a surface is not flat, and the electric field will not be uniform (either in
magnitude or direction) over the surface. In practice one must use the machinery of advanced
calculus to find the flux for the general case, but it is not hard to get the basic idea of the
process: We divide up the surface into little sections (say, squares) which are all small enough
so that it is a good approximation to treat them as flat and small enough so that the electric
field E is reasonably constant. Suppose the ith little square has area vector ∆Ai and the
value of the electric field on that square is close to Ei. Then the electric flux for the little
square is found as before,

∆Φi = ∆Ai · Ei

and the electric flux for the whole surface is roughly equal to the sum of all the individual
contributions:

Φ ≈
∑

i

∆Ai · Ei

The procedure is illustrated in Fig. 3.2.
The procedure outlined above gets closer and closer to the real value of the electric

flux Φ when we make the little squares more numerous and smaller. A similar procedure in
beginning calculus gives an integral (for one variable). Here, we arrive at a surface integral
and the proper way to write out definition of the electric flux over the surface S is

Φ =
∫

S

E · dA (3.1)
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3.1.3 Gaussian Surfaces

For now at least, we are only interested in finding the flux for a special class of surfaces, ones
which we call Gaussian surfaces. Such a surface is a closed surface. . . that is, it encloses a
particular volume of space and doesn’t have any holes in it. In principle it have any shape
at all, but in our problem–solving we will have the most use for surfaces which have a high
degree of symmetry, for example spheres and cylinders.

When we find the electric flux on a closed surface, it is agreed that the unit normal for
all the little surface elements dA points outward .

There is a special notation for a surface integral done over a closed surface; the integral
sign will usually have a circle superimposed on it. Thus for a Gaussian surface S, the electric
flux is written

Φ =
∮

S

E · dA (3.2)

We will be considering Gaussian surfaces constructed around different configurations of
charges, configurations for which we are interested in finding the electric field. We get an
interesting result for the electric flux for a Gaussian surface when it encloses some electric

charge. . . and also when it doesn’t!

3.1.4 Gauss’(s) Law

Suppose we choose a closed surface S in some environment where there are charges and
electric fields. We can (in principle, at least) compute the electric flux Φ on S. We can also
find the total electric charge enclosed by the surface S, which we will call qenc. Gauss’(s)
Law tells us:

Φ =
∮

E · dA =
qenc

ε0
(3.3)

3.1.5 Applying Gauss’(s) Law

Gauss’(s) Law is used to find the electric field for charge distributions which have a symmetry
which we can exploit in calculating both sides of the equation:

∮

E · dA and qenc/ε0.

• Point Charge

Of course, we already know how to get the magnitude and direction of the electric field
due to a point charge q. Here we show how this result follows from Gauss’(s) Law. (The
purpose here is to give a patient discussion of how we get a known result so that we can use
Gauss’(s) Law to obtain new results.

We imagine a spherical surface of radius r centered on q, as shown in Fig. 3.3. The
spherical shape takes advantage of the fact that a single point gives no preferred direction in
space. When we are done with the calculation, we will know the electric field for any point
a distance r away from the charge.

Having drawn the proper surface, we have to use a little “common sense” for determining
the direction of the electric field. From symmetry we can see the the the E field must point
radially. Imagine looking at the point charge from any direction. It doesn’t look any different!
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Figure 3.3: Gaussian surface of radius r centered on a point charge q. Symmetry dictates that the E field
must point in the radial direction so that for points on the surface it is (locally) perpendicular to the surface.

But if the electric field’s direction were anything but radial (straight out from the charge)
we could distinguish the direction from which we were observing the charge.

Furthermore at a given distance r from the charge, the magnitude of the E field must be
the same, although for all we know right now it could depend upon r. So we conclude that
at all points of our (spherical) surface the E field is radial everywhere and its magnitude is
the same. This fact is indicated in Fig. 3.3.

With this very reasonable assumption about E we can evaluate
∮

E ·dA without explicitly

doing any integration. We note that every where on the surface the vector E is parallel to
the area vector dA, so that E · dA = E dA. Since the magnitude of E is constant over the
surface it can be taken outside the integral sign:

∮

E · dA =
∮

EdA = E
∮

dA .

But the expression
∮

dA just tells us to add up all the area elements of the surface, giving
us the total area of the spherical surface, which is 4πr2. So we find:

∮

E · dA = E(4πr2) .

Now the charge enclosed by the Gaussian surface is simply q, that is:

qenc = q .

Putting these facts into Gauss’(s) Law (Eq. 3.3) we have:

E(4πr2) =
q

ε0
=⇒ E =

q

4πε0r2
,

which we know is the correct answer for the electric field due to a point charge q.

• Spherically–Symmetric Distributions of Charge
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Figure 3.4: Gaussian surface of radius r centered on spherically symmetric charge distribution with total
charge q. E field points radially outward on the surface.

Using Gauss’(s) Law and a spherical Gaussian surface, we can find the electric field
outside of any spherically symmetric distribution of charge. Suppose we have a ball with
total charge q, where the charge density only depends on the distance from the center of the
ball. (That is to say, is has spherical symmetry.) We can draw a Gaussian surface of radius
r (r being large than the radius of the ball) and use the same arguments as for the point
charge to find the electric field.

We again argue that since the system looks the same regardless of the direction from
which we view it, the E field on the spherical surface must point in the radial direction. (See
Fig. 3.4.) So for the surface integral in Gauss’(s) Law, we get exactly the same thing we had
before:

∮

E · dA =
∮

EdA = E(4πr2) .

As for the charge enclosed, since the total charge is given as q, Gauss’(s) Law gives us:

E(4πr2) =
q

ε0

so as before we find that the magnitude of the electric field at a distance r from the center
of the ball of charge is

E =
q

4πε0r2

From a mathematical point of view, this result is quite interesting. It is the same as the
field due to a point charge (as long as r is bigger than the ball’s radius). The exact nature
of the distribution of charge does not matter, just so long as it is spherically symmetric and
its total is q. If you were to try to calculate the electric field explicitly by doing a integral
over the volume elements of the sphere it would be a lot of work! Using Gauss’(s) Law the
calculation is very easy.

As a further example involving spherical symmetry, we consider a hollow spherically-
symmetric charge distribution. We can find the value of the electric field inside all of charge.



44 CHAPTER 3. GAUSS’(S) LAW

r

E

E
E

Figure 3.5: Gaussian surface of radius r centered in the interior of a spherically symmetric charge distri-
bution with total charge q. E must point in the radial direction everywhere on the surface, but in fact E is
zero.

To do this we once again draw a spherical Gaussian surface, this time of radius r, where r
is smaller than the inner radius of the hollow ball.

What can we say about the electric field on this Gaussian surface? Symmetry tells us
exactly the same thing as before: The electric field (if there is one!) must point in the radial
direction because of the symmetry of the problem, and it must have the same magnitude
everywhere on the surface. This is shown in Fig. 3.5. So again we have

∮

E · dA =
∮

EdA = E(4πr2) .

But this time the Gaussian surface encloses no charge at all . So Gauss’(s) Law gives

E(4πr2) =
qenc

ε0
= 0

so that E = 0 anytime we are inside the hollow sphere of charge. This result comes about
very simply using Gauss’(s) Law but it is rather challenging to show it by doing all the
integrals by hand.

• Other Geometries
We can use Gauss’(s) Law to find the electric field around other charge distributions

which have some type of symmetry, but we need to chose Gaussian surfaces of different
shapes in order to take advantage of the symmetry.

If a charge distribution has symmetry about an axis (that is, cylindrical symmetry, like a
long line of charge) then it is most useful to choose a cylindrical Gaussian surface, as shown
in Fig. 3.6.

Using a cylindrical Gaussian surface, one can show that for a line of charge with a
(positive) linear charge density λ, the electric field E at a distance r from the points radially
outward and has magnitude

E =
λ

2πε0r
(3.4)
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Figure 3.6: Gaussian surface for a line charge or more generally a distribution with cylindrical symmetry.

Figure 3.7: Gaussian surface for a sheet of charge (or, more generally, a charge distribution with planar
symmetry).

If the charge density λ is negative, the E field points radially inward with a magnitude given
by 3.4 with λ being the magnitude of the charge density.

If a charge distribution has planar symmetry that is, it stretches out uniformly and
forever in the x and y directions) then it turns out to be quite useful to choose a Gaussian
surface shaped like a “pillbox”, that is, a cylindrical shape of very small thickness. Such a
construction is shown in Fig. 3.7.

Using such a “pillbox” Gaussian surface, one can show that for a plane of charge with a
(positive) charge density (charge per unit area) σ, the electric field E points outward from
the sheet and has magnitude

E =
σ

2ε0
(3.5)

If the charge density is negative the electric field points inward toward the sheet and has a
magnitude given by 3.5 with σ being the magnitude of the charge density. This is the same
result as Eq. 2.7.

Note that the magnitude of the E field in 3.5 does not depend on the distance from the
sheet of charge.

3.1.6 Electric Fields and Conductors

For the electrostatic conditions that we are considering all through Vol. 4, the electric field
is zero inside any conductor. Using Gauss’(s) law it follows that if a conductor carries any
net charge, the charge will reside on the surface(s) of the conductor.

Also using Gauss’(s) law one can show that the electric field just outside a conducting
surface is perpendicular to the surface and is given by

E =
σ

ε0
(3.6)
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Figure 3.8: Example 1.

where σ is the surface charge density at the chosen location on the conductor and where we
mean that if σ is positive the E field points outward and if it is negative the E field points
toward the surface. Note that Eq. 3.6 differs from Eq. 3.5; the reasons are subtle! Be careful
in choosing which one to use!

3.2 Worked Examples

3.2.1 Applying Gauss’(s) Law

1. In Fig. 3.8, a small nonconducting ball of mass m = 1.0mg and charge
q = 2.0 × 10−8 C (distributed uniformly through its volume) hangs from an in-
sulating thread that makes an angle θ = 30◦ with a vertical, uniformly charged
nonconducting sheet (shown in cross section). Considering the gravitational
force on the ball and assuming that the sheet extends far vertically and into and
out of the page, calculate the surface charge density σ of the sheet. [HRW6 24-29]

Draw a free–body diagram for the sphere! This is done in Fig. 3.9. The forces on the ball
are gravity, mg downward, the tension in the string T and the force of electrostatic repulsion
(Felec, straight out from the sheet), arising from the sheet of positive charges. We know that
the electrostatic force must point straight out from the sheet because the electric field arising
from the charge points straight out, so the force exerted on the ball must point straight out
as well. (We can assume the ball acts like a point charge with the charge concentrated at
its center.)

First, find Felec. The ball is in static equilibrium, so that the vertical and horizontal
forces sum to zero. This gives us the equations:

T cos θ = mg T sin θ = Felec
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Figure 3.9: Free–body diagram for the small ball in Example 1.

Divide the second of these by the first to cancel out T and give:

sin θ

cos θ
= tan θ =

Felec

mg
=⇒ Felec = mg tan θ

Plug in the numbers (note: 1.0mg = 1.0 × 10−6 kg) and get

Felec = (1.0 × 10−6 kg)(9.80 m
s2

) tan 30◦ = 5.7 × 10−6 N

From Felec = |q|E we can get the magnitude of the electric field:

E = Felec/|q| = (5.7 × 10−6 N)/(2.0 × 10−8 C) = 2.8 × 102 N
C

This is the magnitude of an E field on one side of an infinite sheet of charge so that from
Eq. 3.5 we can find the charge density of the sheet:

σ = 2ε0E = 2(8.85 × 10−12 C2

N·m2 )(2.8 × 102 N
C
) = 5.0 × 10−9 C

m2 = 5.0 nC
m2

Since the E field points away from the sheet, this is the correct sign for the charge density;
the charge density of the sheet is +5.0 nC

m2 .

2. In a 1911 paper, Ernest Rutherford said: “In order to form some idea of
the forces required to deflect an α particle through a large angle, consider an
atom [as] containing a point positive charge Ze at its center and surrounded by
a distribution of negative electricity −Ze uniformly distributed within a sphere
of radius R. The electric field E at a distance r from the center for a point inside

the atom [is]

E =
Ze

4πε0

(

1

r2
−

r

R3

)

.”

Verify this equation. [HRW6 24-37]

Rutherford’s model of the atom is shown in Fig. 3.10(a). The charge density of the
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Figure 3.10: (a) Rutherford’s atomic model. Point charge +Ze is at the center, with a ball of uniform
charge density of radius R and total charge −Ze surrounding it. (b) Spherical Gaussian surface of radius r.

distribution of “negative electricity” is found by dividing the total charge −Ze by the volume
of the ball:

ρ−Ze =
−Ze
4
3
πR3

= −
3Ze

4πR3

To find the electric field at a distance r from the center (where r < R), we will assume from
the spherical symmetry of the problem that the E field points radially, and its magnitude
depends on the distance from the center, r. Then a spherical Gaussian surface will be useful,
and such a surface is shown in Fig. 3.10(b). The surface has radius r and is centered on the
point charge +Ze. Since the E field is (assumed) radial, the surface integral of E will give
a simple result, and it won’t be too hard to find the charge enclosed by this surface. Then
Gauss’(s) Law will give us E.

What is the charge enclosed by the surface in Fig. 3.10(b)? It encloses the point charge
+Ze but it also encloses some of the continuous charge distribution. How much? The volume
of our surface is 4

3
πr3 and multiplying this volume by the charge density found above gives

the amount of the charge from the ball of negative charge which is enclosed. Thus the total

charge enclosed by the surface is

qenc = +Ze +
(

4
3
πr3

)

(

−3Ze

4πR3

)

= +Ze − Ze

(

r3

R3

)

= Ze

(

1 −
r3

R3

)

(Notice that when r = R the total charge enclosed is zero, as it should be.)
Now, the surface integral of E is just the (common) magnitude of E on the surface

multiplied by its area, 4πr2. Putting all of this together, Gauss’(s) Law gives us:

∮

E · dA =
qenc

ε0
=⇒ E(4πr2) =

Ze

ε0

(

1 −
r3

R3

)

Divide through by 4πr2 to get E, the radial component of the E field inside the “atom”



3.2. WORKED EXAMPLES 49

R

r(r)

r

(a) (b)

Figure 3.11: (a) Ball of charge, radius R. The charge density depends on the distance r. (b) Spherical
Gaussian surface of radius r drawn inside the sphere.

(which is also the magnitude of the E field):

E =
Ze

4πε0

(

1

r2
−

r

R3

)

3. A solid nonconducting sphere of radius R has a nonuniform charge distribution
of volume charge density ρ = ρsr/R, where ρs is a constant and r is the distance
from the center of the sphere. Show (a) that the total charge on the sphere is
Q = πρsR

3 and (b) that

E =
1

4πε0

Q

R4
r2

gives the magnitude of the electric field inside the sphere. [HRW6 24-41]

(a) The ball of charge with nonuniform density ρ(r) is drawn in Fig. 3.11(a). To get the
total charge, integrate the charge density ρ(r) over the volume of the sphere. (We must do
an integral since the density is not uniform.) When integrating functions like ρ(r) which
depend only on the distance r over a spherical volume, we multiply ρ(r) by the volume of
the spherical shell element 4πr2dr and sum up from r = 0 to r = R:

Q =
∫

sphere
ρ(r)dτ =

∫

R

0
ρ(r)4πr2dr

Substitute the given expression for ρ(r) and get:

Q =
∫

R

0

ρsr

R
(4π)r2dr =

4πρs

R

∫

R

0
r3dr =

4πρs

R

r4

4

∣

∣

∣

∣

∣

R

0

=
4πρs

R

R4

4
= πρsR

3

(b) To find the E field inside the sphere: Assume that the E field points in the radial direction
(from the spherical symmetry of the problem). Imagine a spherical Gaussian surface of radius
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r centered on the center of the charge distribution, as drawn in Fig. 3.11(b). Then the surface
integral of E will have a simple expression and if we can calculate the charge enclosed by
this surface, we can find E using Gauss’(s) Law.

To get the enclosed charge, perform an integral as in part (a) but this time only integrate
out to the radius r. This gives us:

qenc =
∫

r

0
ρ(r′)(4πr′2)dr′ =

∫

r

0

ρsr
′

R
(4πr′2)dr′

=
4πρs

R

∫

r

0
r′3dr′ =

4πρs

R

r4

4
=

πρsr
4

R

As usual (yawn) the surface integral of the E field over the spherical Gaussian surface is

∮

E · dA = E(4πr2)

Putting all of this into Gauss’(s) Law, we find:

∮

E · dA =
qenc

ε0

=⇒ E(4πr2) =
πρsr

4

ε0R

Divide out the 4πr2 and get:

E =
ρsr

2

4ε0R

This answer is correct, but we would like to express E in terms of the total charge of the
sphere (instead of ρs). In part (a) we found that we can write:

Q = πρsR
3 =⇒ ρs =

Q

πR3

so then our answer for E is

E =
r2

4ε0r

(

Q

πR3

)

=
Qr2

4πε0R4

This is the radial component of the E field as well as its magnitude.

3.2.2 Electric Fields and Conductors

4. An isolated conductor of arbitrary shape has a net charge of +10 × 10−6 C.
Inside the conductor is a cavity within which is a point charge q = +3.0 × 10−6 C.
What is the charge (a) on the cavity wall and (b) on the outer surface of the
conductor? [HRW6 24-15]

(a) The system is shown in Fig. 3.12(a). Consider any Gaussian surface which lies within
the material of the conductor and encloses the cavity, as shown in Fig. 3.12(b). Since E = 0
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Figure 3.12: (a) Conductor carrying a net charge has a cavity inside of it. Cavity contains a charge
q = 3.0 × 10−6 C. (b) Charges in the conductor arrange themselves; negative charges collect on the inner
surface; the Gaussian surface shown must enclose a net charge of zero! An even larger number of positive
charges collect on the outer surface since the conductor must have a net positive charge.

everywhere inside the conductor the integral
∮

E · dA on this surface gives zero and then
by Gauss’(s) Law the total charge enclosed is zero. The surface encloses the charge q =
+3.0× 10−6 C and also the charge which accumulates on the inner surface of the conductor.
This implies that the charge which collects on the inner surface is qinner = −3.0 × 10−6 C.

(b) The rest of the free charge on the conductor accumulates on the outer surface. But the
total must come out to +10 × 10−6 C, as advertised! Thus:

qouter + qinner = +10 × 10−6 C .

Then:

qouter = +10 × 10−6 C − qinner

= +10 × 10−6 C − (−3.0 × 10−6 C) = 13 × 10−6 C

The charge on the outer surface is +13 × 10−6 C.




