LCR Parallel Resonance

Expression for Resonant Frequency:

Parallel resonance circuit is shown in fig(1). One branch of the resonant circuit consists
resistance R in series with an inductance L. Capacitor C is connected parallel to the RL
combination in other branch. An AC source is applied across this parallel combination.

The admittance of the circuit is given by
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At resonance the reactance part of Eqn(1) is equal to zero
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where f, = resonant frequency of LCR parallel circuit

Dvynamic Resistance

The resistance at resonance is known as dynamic resistance. Consider the following equation.
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we know that (R*> +o’L*) = Rk substituting in Eqn(1), we get
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where r4 is known as dynamic resistance.
Bandwidth
Bandwidth is defined as the band of frequencies

between two points on either side of resonant
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value at resonance.

Impedance of the LCR parallel circuit is given by
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where R << oL then R can be neglected from the above equation.
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Taking modulus on bothsides of the above equation, we get
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Multiplying numerator and denomination of eqn (1) with oRC’ we get
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squaring on both sides of equ(2), we get
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taking square root on both sides of the above equation, we get
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Eqn (3) is a quadratic equation in « and will yield two values. The two values ®, and ®, and

they can be obtained as follows.
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as R << oL, therefore can be ignored from the above equation, we get
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Let L =a, and we know that ic =, , substituting these values in the equ (4) we get
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Two roots can be written as follows
o,=0,+a and o, =w,— o (sinceangular frequency can not be

negative)

Therefore Bandwidth .. Aw=w, —o,
substituting ®; and m; values in the above equation, we get
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Therefore bandwidth Af =(f, —f,)=




Quality Factor ( Q — Factor)
When voltage V is applied to the parallel LCR circuit, the
current flowing through the circuit at resonance is given by
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Where 14 is dynamic resistance = RC

Substituting r4 value in eqn (1), we get
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Voltage across the capacitor = V¢

Voltage across the inductor = Vi
From fig (4) voltage across capacitor (V) = voltage across inductor (VL) = applied voltage (V)
(Since the capacitor and the inductor are parallel to the applied voltage)
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Substituting V value from eqn(2) in eqn(3) we get
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Voltage across the inductor is V=1 xo,L
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substituting V value from eqn(2) in eqn (4), we get
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The Q-factor is defined as the magnification of the current at resonance
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From eqn(4) we have




From eqn (5) we have






