
LCR Parallel Resonance 

 

Expression for Resonant Frequency: 

 

Parallel resonance circuit is shown in fig(1). One branch of the resonant circuit consists 

resistance R in series with an inductance L. Capacitor  C is connected parallel to the RL 

combination in other branch. An AC source is applied across this parallel combination. 

The admittance of the circuit is given by 
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  At resonance the reactance part of  Eqn(1) is equal to zero 
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 where f0 = resonant frequency of LCR parallel circuit 

 

 

Dynamic Resistance 

 

The resistance at resonance is known as dynamic resistance. Consider the following equation. 
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where rd is known as dynamic resistance. 

 

Bandwidth 

 

Bandwidth is defined as the band of frequencies 

between two points on either side of resonant 

frequency where impedance falls to 
1

2
times of 

value at resonance. 

 

Impedance of the LCR parallel circuit is given by 
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 where R << ωL then R can be neglected from the above equation. 
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Taking modulus on bothsides of the above equation, we get 
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Multiplying numerator and denomination of eqn (1) with 
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  squaring on both sides of equ(2), we get 
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    taking square root on both sides of the above equation, we get 
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 Eqn (3) is a quadratic equation in ω  and will yield two values. The two values 
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they can be obtained as follows. 
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Two roots can be written as follows 
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Quality Factor  ( Q – Factor) 

When voltage V is applied to the parallel LCR circuit, the 

current flowing through the circuit at resonance is given by 
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Substituting rd value in eqn (1), we get 
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  Voltage across the capacitor = VC 

  Voltage across the inductor = VL 

From fig (4) voltage across capacitor  (VC) = voltage across inductor (VL) =  applied voltage (V) 

(Since the capacitor and the inductor are parallel to the applied voltage) 

 Voltage across capacitor 
C

O

1
V I x

C
=

ω
        

 
C OI V C= ω  ---------- (3) 

 Substituting V value from eqn(2) in eqn(3) we get 
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substituting V value from eqn(2) in eqn (4), we get 
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The Q-factor is defined as the magnification of the current at resonance 
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