Chapter 7 — Poisson’s and Laplace Equations

A useful approach to the calculation of electric potentials

Relates potential to the charge density.
The electric field is related to the charge density by the divergence relationship

F = electric field

V-E="— P = charge density
2
£y = permittivity

The electric field is related to the electric potential by a gradient relationship

E=-VV

Therefore the potential is related to the charge density by Poisson's equation
vV.vv=vy= £
€
In a charge-free region of space, this becomes Laplace's equation

VV=0
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Poisson’s and Laplace Equations

From the point form of Gaus's Law ,
Laplace’s Equation

Del dot D=py

If py=0
Definition D

Del dot D=py
D=c¢E Del Del= Laplacian

and the gradient relationship The divergence of the

gradient of a scalar function

E=-DeV is called the Laplacian.

Del D = Del (¢E) = —Del dot_(eDeN) = py,

“Pv . .
Del DelV = — Poisson’s Equation
€




Poisson’s and Laplace Equations
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Examples of the Solution of Laplace’s Equation

D7.1
Given
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Uniqueness Theorem

Given is a volume V with a closed surface S. The function V(x,y,z) is
completely determined on the surface S. There is only one function V(Xx,y,z)
with given values on S (the boundary values) that satisfies the Laplace
equation.

Application: The theorem of uniqueness allows to make statements about the
potential in a region that is free of charges if the potential on the surface of this
region is known. The Laplace equation applies to a region of space that is free
of charges. Thus, if a region of space is enclosed by a surface of known
potential values, then there is only one possible potential function that satisfies
both the Laplace equation and the boundary conditions.

Example: A piece of metal has a fixed potential, for example, V =0 V.
Consider an empty hole in this piece of metal. On the boundary S of this hole,
the value of VV(X,y,z) is the potential value of the metal, i.e., V(S) =0 V.
V(x,y,z) = 0 satisfies the Laplace equation (check it!). Because of the theorem
of uniqueness, V(X,y,z) = 0 describes also the potential inside the hole



Examples of the Solution of Laplace’s Equation

Example 7.1

Assume V is a function only of X — solve Laplace’s equation




Examples of the Solution of Laplace’s Equation

Finding the capacitance of a parallel-plate capacitor
Steps

1-GivenV,use E=-DelVtofind E
2—UseD=¢EtofindD

3 - Evaluate D at either capacitor plate, D = Ds = Dn an

4 — Recognize that ps = Dn

5 —Find Q by a surface integration over the capacitor plate
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Examples of the Solution of Laplace’s Equation

Example 7.2 - Cylindrical




Examples of the Solution of Laplace’s Equation

Example 7.3
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Examples of the Solution of Laplace’s Equation

Example 7.4 (spherical coordinates)
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Examples of the Solution of Laplace’s Equation

Example 7.5
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Examples of the Solution of Poisson’s Equation
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Product Solution Of Laplace's Equation

Referring to the figure below and the specific boundary conditions for the potential on the
sides of the structure ...

V=0 Y=y

| =
V=0
x=h

... choose thedimensions a and b of the boxand thpotential boundary conditiony
b:=05 Length of box in the x direction (m).
a:=05 Length of box in the y direction (m).

Vo =2 Imp ressed potential on the wall at x= b (V).



Product Solution Of Laplace's Equation

Define potential function

The solution for the potential everywhere inside the rectangular box structure is given as a
infinite series. It is not possible to numerically add all of the infinite number of terms in th
series. Instead, we will choose the maximum number of termg,nto sum:

Nmax = 41 Maximum n for summation.

n:=1,3..Nmax Only the odd n terms are summed since all even n terms are zerc

The potential V' every where inside the structure was determined in Example 3.24 to be:

4.\ - -
V(X,y) = - O-Z - }{1“% 'bj -sin}{nz Xj-sir(nz y)
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Product Solution Of Laplace's Equation

Plot V versus x at y = a/2

W e will generate three different plots of this potential. The first is VVas a function of x thi
the center of the box structure. The other two plots will show the potential within the int
of the boxin the xy plane. Choose the number of points to plot Vin the xand y direction:

npts:= 50 Number of points to plot Vin xand y.

Xend = b Yend = a xand y ending points (m).
Generate a list of xxand y; points at which to plot the potential:

i:=0. npts—1 j:=0..npts—1

Xend Vi Yend
npts— 1 - npts— 1
Now plot the potential as a fundion of xthrough the center of the boxat y = a/2:
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Vaty =a/2
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Product Solution Of Laplace's Equation

Computed Exact

v(b,gj = 20303 (V) Vo= 20000 (V)

For nmax = 41 , the percent error in the potential at this point is:

a
Vib,— |-V
( 2) °

Vo

Error :=

100 Error = 1.515 (%)



Product Solution Of Laplace's Equation

Plot VV throughout the inside of the box

Now we will plot the potential throughout the interior of the rectangular boxstructure.
compute V at the matrixof pointsand y:

Potentigl j := V(Xi.Vj)

Now generate a contour plot of Potential

Plot of V(xYy)

Yend = 0.500 (m)

Fora boxwith
b=05((m)
a= 0.5 (m)
and

Vo =2 (V)

y =0 (m)

Potential
Xx=0 (M) Xend = 0.500 (m)

We can observe in this plot that the potential is a complicated function of xand y. (Th
plot below may help in visualizing the variation of VVthroughout the interior of this bo:
potential is symmetric about the plane y = a/2 which we would expect since the box
boundary conditions are both symmetric about this same plane.



Product Solution Of Laplace's Equation
V(xy)

For a box with
b =05 (m)
a=05 (m

and
Vo =2 (V)

Potential

The jagged edge on the potential at the far wall is due to numerical error and is a nonphysical
result. The potential along that wall should exactly equal

Vo=2 (V)
since that is the applied potential along that wall. This jaggedness in the numerical solution can
be reduced by increasing the number of terms in the infinite summation (n max) for V and/or

increasing the number of points to plot in the contour and surface plots (npts).





