
Chapter 7 – Poisson’s and Laplace Equations 

A useful approach to the calculation of electric potentials 

Relates potential to the charge density.  

The electric field is related to the charge density by the divergence relationship 

The electric field is related to the electric potential by a gradient relationship 

Therefore the potential is related to the charge density by Poisson's equation 

In a charge-free region of space, this becomes Laplace's equation 
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Poisson’s and Laplace Equations 

Poisson’s Equation 

From the point form of Gaus's Law

Del_dot_ D  v

Definition D

D E

and the gradient relationship
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Laplace’s Equation

if  v 0

Del_dot_D  v

Del_Del Laplacian

The divergence of the 

gradient of a scalar function 

is called the Laplacian. 
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Poisson’s and Laplace Equations 
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Examples of the Solution of Laplace’s Equation 

 

D7.1 



Uniqueness Theorem 

Given is a volume V with a closed surface S. The function V(x,y,z) is 

completely determined on the surface S. There is only one function V(x,y,z) 

with given values on S (the boundary values) that satisfies the Laplace 

equation.  

 

Application: The theorem of uniqueness allows to make statements about the 

potential in a region that is free of charges if the potential on the surface of this 

region is known. The Laplace equation applies to a region of space that is free 

of charges. Thus, if a region of space is enclosed by a surface of known 

potential values, then there is only one possible potential function that satisfies 

both the Laplace equation and the boundary conditions.  

 

Example: A piece of metal has a fixed potential, for example, V = 0 V. 

Consider an empty hole in this piece of metal. On the boundary S of this hole, 

the value of V(x,y,z)  is the potential value of the metal, i.e., V(S) = 0 V. 

V(x,y,z) = 0 satisfies the Laplace equation (check it!). Because of the theorem 

of uniqueness, V(x,y,z) = 0 describes also the potential inside the hole  



Examples of the Solution of Laplace’s Equation 

 

Example 7.1 

 
Assume V is a function only of x – solve Laplace’s equation 

V
V o x

d



Examples of the Solution of Laplace’s Equation 

Finding the capacitance of a parallel-plate capacitor 

 

Steps 

 

1 – Given V, use E = - DelV to find E 

2 – Use D = E to find D 

3 -  Evaluate D at either capacitor plate, D = Ds = Dn an 

4 – Recognize that s = Dn 

5 – Find Q by a surface integration over the capacitor plate 

C
Q
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Examples of the Solution of Laplace’s Equation 

 

Example 7.2 - Cylindrical 
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Examples of the Solution of Laplace’s Equation 

 

Example 7.3  



Examples of the Solution of Laplace’s Equation 

 

Example 7.4  (spherical coordinates) 
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Examples of the Solution of Laplace’s Equation 

 

Example 7.5   
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Examples of the Solution of Poisson’s Equation 
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Product Solution Of Laplace's Equation 

  

Referring to the figure below and the specific boundary  condit ions for the potential on the four 

sides of the structure ... 

... choose the dimensions a and b of the box and the potential boundary  condit ion V0:

 
b 0.5 Length of box in the x direct ion (m).

a 0.5 Length of box in the y direction (m).

V0 2 Impressed potential on the wall at  x = b (V).



Define potential function

The solution for the potential everywhere inside the rectangular box structure is given as an 

infinite series. It is not possible to numerically add all of the infinite number of terms in this 

series. Instead, we will choose the maximum number of terms nmax to sum:

nmax 41 Maximum n for summation.

n 1 3 nmax Only the odd n terms are summed since all even n terms are zero.

The potential V every where inside the s tructure was  determined in Example 3.24 to be:
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Product Solution Of Laplace's Equation 

  



Product Solution Of Laplace's Equation 

  
Plot V versus x at y = a/2

We will generate three different plots of this potential. The first is V as a function of x through 

the center of the box structure. The other two plots will show the potential within the interior 

of the box in the xy plane. Choose the number of points to plot V in the x and y directions:

npts 50 Number of points to plot V in x and y.

xend b yend a x and y ending points  (m).

Generate a list of xi and yj points at which to plot the potential:

i 0 npts 1 j 0 npts 1

xi i
xend

npts 1
 yj j

yend

npts 1


Now plot the potential as a function of x through the center of the box at y = a/2:
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Computed Exact
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For nmax 41 , the percent error in the potential at  this point is:
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Product Solution Of Laplace's Equation 

  



Product Solution Of Laplace's Equation 

  Plot V throughout the inside of the box

Now we will plot the potential throughout the interior of the rectangular box s tructure. First 

compute V at the matrix of points xi and yj:

Potentiali j V xi yj 

Now generate a contour plot of Potentiali,j:

Plot of V(x,y)

Potential

yend 0.500 m( )

For a box with

   b 0.5 (m)

   a 0.5 (m)

and

   V0 2 (V)

y = 0  (m)

x = 0  (m) xend 0.500 m( )

We can observe in this plot that the potential is  a complicated function of x and y. (The surface 

plot below may help in visualizing the variation of V throughout the interior of this box.) The 

potentia l is symmetric about the plane y  = a/2 which we wou ld expect since the  box and the  

boundary conditions are both symmetric about this  same plane.



Product Solution Of Laplace's Equation 

  V(x,y)

Potential

For a box with

   b 0.5 (m)

   a 0.5 (m)

and

   V0 2 (V)

The jagged edge on the potential at the far wall is due to numerical error and is a nonphysical 

result. The potential along that wall should exactly equal

V0 2   (V)

since that is the applied potential along that wall. This jaggedness in the numerical solution can 

be reduced by increasing the number of terms in the infinite summation (n max) for V and/or 

increasing the number of points to plot in the contour and surface plots (npts).




