- ➤The Oscilloscope is a Sensitive indicator for Frequency and Phase Measurements.
- ➤ The Lissajous Pattern Results ,when sine waves are applied simultaneously to both pairs of deflection plates.
 - If One frequency is an integral multiple of other ,the pattern will be stationary and is called a Lissajous figure.

Basic Circuit for Frequency Measurements with Lissajous Figures

The Resulting Patterns depend on the integral and phase relationship between two frequencies.

≻Measurement Procedure

- Set up the Oscilloscope and Switch off the Internal sweep(Change to Ext)
- 2. Switch off Sync. Control
- 3. Connect the Signal sources as shown in above fig.
- Set the Horizontal and Vertical gain Control for desired width and height of the Pattern
- Keep freq f_v Constant and Vary freq f_h noting that the pattern spins in alternate directions and changes shape.
- The Pattern stands still when ever f_v and f_h are in an integral ratio(either even or odd)
- 7. When $f_v = f_h$, the pattern stand still and is a single circle or ellipse
- 8. When $f_v=2f_h$, a two loop horizontal pattern is obtained.

$$f_v = (\text{fraction}) \times f_h$$

or $\frac{f_v}{f_h} = \frac{\text{number of horizontal tangencies}}{\text{number of vertical tangencies}}$

Fig. 7.31 mm Lissajous Patterns for Integral Frequencies

When the two frequencies being compared are not equal, but are fractionally related, a more complex stationary pattern results, whose form is dependent on the frequency ratio and the relative phase between the two signals, as in Fig.

Lissajous Patterns for Non-Integral Frequencies

