Department of Mathematics			
	B.Sc.		
Sr. No.	Program Specific Outcome By the end of this program, the students will be able to:		
PSO 1	Analyze basic concepts of Mathematics.		
PSO 2	Discover applications of pure and applied subjects.		
PSO 3	Solve problems in competitive related to logic and aptitude.		
PSO 4	Form and find a solution through mathematical modeling related to real world phenomenon.		
PSO5	Eligible for specific government post related with mathematics.		

Program Name – B.Sc. I		
Course Name/ paper	Course Outcome By the end of each of the following course, the students will be able to:	
Paper I – Differential Calculus	CO 1: Understand De Moivre's Theorem and its applications. CO 2: Solve hyperbolic equations using its properties. CO 3: Find successive differentiation and its applications.	
	CO 4: Analyze concept of partial differentiation with some properties and its applications to maxima and minima.	
Paper II - Calculus	CO 1: Apply MVT to study properties of functions CO2: Find Taylors and Maclaurins series expansion of functions. CO 3: Understand L'Hospital Rule and its applications to evaluate limits. CO 4: Discover properties of continuous function.	
Paper III – Differential Equations	CO 1: Formation of differential equations. CO2: Solve first order differential equations and its application to find orthogonal trajectories. CO 3: find a solution of first order higher degree equations. CO 4: Solve linear differential equations with constant coefficients and homogeneous differential equations.	
Paper IV – Higher order ordinary differential equations and partial order differential equations	CO 1: Apply different methods to solve second order differential equations. CO 2: Solve total differential equation. CO3: Solve ordinary simultaneous differential equations. CO4: Form, Categorize partial differential equations and solve PDE using Charpits method.	

Practical Course:	CO 1: Apply Leibnitz's theorem, Euler's theorem and De Moivre's Theorem to solve
CCPM –I	problems.
	CO 2: Analyse Maxima and Minima of functions of two variables and trace curves in polar form.
	CO 3: Solve problems related to radius of curvature. curve, parametric and polar curve.
	CO 4: Apply Lagrange's Mean Value theorem, Cauchy's Mean Value theorem and Hospital Rule.

Program Name – B.Sc. II		
Course Name/ paper	Course Outcome By the end of each of the following course, the students will be able to:	
Paper V	CO 1: Analyze functions and its properties.	
Analysis- I	CO 2: Apply mathematical induction to derive specific formulae related to integers.	
	CO 3: Understand the basic ideas countibility of sets.	
	CO 4: Analyse order properties of real numbers, completeness property and the	
	Archimedean property.	
Paper VI	CO 1: Understand properties of matrices.	
Algebra- I	CO 2: Solve System of linear homogeneous equations and linear non-homogeneous	
	equations.	
	CO 3: Extract eigen values and eigen vectors.	
	CO 4: Verify different binary structures and their properties.	
Paper VII –	CO 1: Understand the concepts and different structures, properties of sequence and	
Real Analysis II	subsequence of real numbers.	
	CO 2: Make use of different properties to check the convergence of sequence.	
	CO 3: Analyze series of real numbers with properties.	
	CO 4: Make use of different type test to study convergence of series.	
Paper VIII	CO 1: Make use of Lagrange's theorem to study subgroup.	
Algebra - II	CO 2: Make use of Fermat's theorem to find remainder.	
	CO 3: Explore properties of normal subgroups, factor group.	
	CO 4: Form homomorphism and isomorphisms.	

Practical Course II CCPM - II	CO 1: Solve problems on Eigen values, Eigen vectors and Cayley Hamilton theorem. CO 2: Analyse functions and apply Mathematical Induction. CO 3: Discover convergence of series using Comparison test Cauchy's root test, D' Alembert's ratio test and Rabbi's test. CO 4: Understand group, cyclic subgroup, permutation group and homomorphism and Kernel.
Practical Course III CCPM - III	CO 1: Understand basic concepts in scilab programming and use Scilab as a calculator. CO 2: Use looping structures in Scilab programming. CO 3: Solve linear equations by Gauss Elimination, Gauss Jordan methods. CO 4: Solve linear differential equations by Euler, Euler modified, Runge Kutta 2nd and 4th order methods.

Course Outcome By the end of each of the following course, the students will be able to: O 1: Understand and learn about Riemann integration. O 2: Find Riemann integral of special types of functions. O 3: Solve improper integrals of different types.
O 1: Understand and learn about Riemann integration. O 2: Find Riemann integral of special types of functions. O 3: Solve improper integrals of different types.
O 4: Find Fourier series expansion of given functions over given interval. CO 1: Understand concepts of group and rings. CO 2: Analyze the different structures of Groups and Rings.
CO 3: Understand the different fundamental theorems and its applications. CO 4: Understand the concepts of polynomial rings, unique factorization domain.
2O 1: Understand range of operation research models and techniques, which can be pplied to a variety of industrial and real-life applications. 2O 2: Formulate and apply suitable methods to solve problems. 2O 3: Identify and select procedures for various sequencing, assignment, ransportation problems. 2O 4: Identify and select suitable methods for various games.

Paper XII –	CO 1: Understand the concept of Laplace Transform.
Integral Transforms	CO 2: Apply properties of Laplace Transform to solve differential equations.
	CO 3: Understand the relation between Laplace and Fourier Transform.
	CO 4: Apply infinite and finite Fourier Transform to solve real life problems.
Donor VIII	CO 1: Form different types of metric space.
Paper XIII – Metric	CO 2: Understand the basic concepts of Open sets, Closed sets and connectedness,
Spaces	completeness and compactness of metric spaces.
	CO3: Define homeomorphism to study properties of metric spaces.
	CO 4: Apply knowledge to study Banach and Hilberts spaces.
D VIII	
Paper XIV – Linear	CO 1: Form different vector spaces and subspaces.
Algebra	CO 2: Form different norm linear space.
	CO 3: Analyse the concept of linear transformation and connection between linear
	transformation and matrices.
	CO 4: Apply concepts of eigenvalues, eigen vectors and its connection with real life
	situations.
Paper XV –	CO 1: Understand basic concepts and theorems related to functions of complex
Complex Analysis	variable, its differentiability and integrability.
7 Hidry 515	CO 2: Form an analytic functions.
	CO 3: Evaluate complex integration and differentiations.
	CO 4: Evaluate real integrals using Cauchy residue theorems.
Paper XVI – Discrete	CO 1: Understand classical notations of logic: implications, equivalence, negation,
Mathematics	proof by contradiction, proof by induction, and quantifiers.
	CO 2: Apply notions in logic in other branches of Mathematics.
	CO 3: Analyze elementary algorithms: searching algorithms, sorting, greedy
	algorithms, and their complexity.
	CO 4: apply concepts of graphs and trees to tackle real situations.
Practical Course	CO 1: Use Graphical method for linear programming problems.
IV CCPM – IV	CO 2: Solve Transportation Problems.
	CO 3: Solve Assignment Problems.
	CO 4: Solve game strategies problems.

Practical Course V CCPM – V	CO 1: Find Laplace transforms of elementary functions. CO 2: Evaluate integrals using properties of Laplace transform. CO 3: Find Laplace transforms of integrals and periodic functions. CO 4: Find Inverse Laplace by using standard results.
Practical Course VI CCPM – VI	CO 1: Understand basic Python programming. CO 2: Solve systems of linear algebraic equations using Python programming. CO 3: Solve Initial Value Problems using Python programming. CO 4: Analyze data using Python Libraries.
Practical Course VII CCPM – VII	CO 1: Read, collect, understand the culture of Mathematics. CO 2: Understand historic development of mathematics. CO 3: Understand the new concept of mathematics, innovations. CO 4: Analyze relevance of Mathematics.